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Metrics of Static Spheroidal Charged Dust Distributions 

Subhendu P. Chakravarti 1 and U. K. De 

Physics Department, Jadavpur University, Calcutta 700032, India 

Received November 8, 1978 

Two sets of solutions for a static incoherent charge distribution with 
spheroidal symmetry are presented. In one set, the charge distribution 
can be bounded and the charge-to-mass-density ratio is unity everywhere 
in relativistic units. In the other, the distribution pervades the entire 
space and the ratio of charge to mass-density also varies at different 
points. 

1. INTRODUCTION 

In this communication we present two sets of exact solutions of in- 
coherent static charge distributions having the symmetry of oblate spheroids. 
The first set represents the distribution in the form of finite oblate spheroids 
and the charge-to-mass-density ratio is unity everywhere in relativistic units. 
The exterior electrovac solution is also presented. The solution may be 
adjusted to represent any spheroidal charged dust distribution of finite size. 
The value of charge-to-mass-density ratio is quite consistent with the known 
theorem (De and Raychaudhuri, 1968): If any incoherent charge distribu- 
tion in equilibrium is bound by an electric equipotential surface then the 
charge-to-mass-density ratio must be unity everywhere in relativistic units. 
The validity of the theorem has been verified for finite spherically symmetric 
incoherent charged matter in equilibrium (Bonnor, 1965). In case of two 
other simple symmetries this theorem cannot be verified as a static charged 
dust distribution cannot exist with cylindrical or plane symmetries (Som, 
1964, 1967; De, 1973). 

The second set also represents an incoherent charge distribution, but 
the distribution cannot be bounded. It is quite interesting to note that the 
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charge-to-mass-density ratio is not unity in this case and it varies in the 
distribution. 

Incidentally, there are a few solutions with the spheroidal symmetry 
both for exterior electrovac space and for exterior matter-free space with 
gravitational field only (Misra, 1960; Misra, 1962; Zipoy, 1966; Bannerjee 
and Das, 1976). Ours is an attempt to find the solution in the source region. 

2. THE BOUND DISTRIBUTION 

Following Weyl (Synge, 1971), the general static axially symmetric 
metric for incoherent charged matter can be taken as 

d S  2 = e ~ d t  2 - e"(dp 2 + d Z  2) - e - V p  2 d ~  2 (2.1) 

where v and ~ are functions of  p and Z only. 
However, we consider here "oblate spheroidal coordinates" and so 

we make a transformation of  the p and Z coordinates to 

p = a cosh u cos 0 and Z = a sinh u sin 8 (2.2) 

where a is a constant. The illustration of  oblate spheroidal coordinates may 
be seen elsewhere (Zipoy, 1966). The u-constant surfaces are found to be 
the surface of  the spheroids. 

With the above transformation, the metric (2.1) takes the form 

d S  2 = e ~ d t  2 _ a 2 e , ( s i n h Z u  + sin 2 O)(du 2 + dO 2) 

- a2e -~  cosh 2 u cos 2 0 dcp ~ (2.3) 

where v, cc = v, ~(u, 0). 
Since the static charged matter has spheroidal symmetry, the existing 

electric field is along the u directions (denoted by the suffix 1). Then only 
Fol or F ~ components of  the electromagnetic tensor will exist, and let us 
write 

E 2 = - (~r)F~ (2.4) 

so that E will give the electromagnetic energy density. 
Now, considering the Einstein-MaxweU field equations one can find 

that only the following four independent expressions remain: 

vlvz  + ( ~  + v~) tan 0 - (c~ z + vz) tanh u = 0 (2.5a) 

v22 + ( ~  + v~x) + (a22 + v22) + (~2 + v~) tan 0 + ( ~  + vl) t anhu  = 0 
(2.5b) 

e-0r 

8~rE2 = 4a2(sinh 2 u + sin 2 0) [(all + vl~) + (a22 + v22) + v~ ~' 

- ( ~  + v~) tanh u - (~2 + v2) tan 0] (2.5c) 
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e - t ~  

4r = 4a2(sinh 2 u + sin z 0) [ - v i a  - (uxl - v11) - (Uzz - v22) 

+ (ul + 3v l ) t anh  u + (a2 - v2) tan 0] (2.5d) 

where p is the mat te r  density. 
In  order  to avoid a singularity a t  the center o f  the coordinate  system, 

it is obvious  f rom equat ion (2.1) tha t  the following condi t ion must  be 
satisfied: 

l im 2,re~t2 0 = e-~12 0 
,0~0 = 0  

This . amounts  to 
l im (u + v) = 0 (2.6a) 
,o-*0 

Hence,  i f  one wants  to solve for  ~ and  v f rom equations (2.5a) and  (2.5b) 
the condi t ion (2.6a) must  be satisfied to have a regular  solution at  the center. 

We now make  the simplest assumpt ion  regarding equat ion (2.6a), i.e., 
let us assume 

+ v = 0 (2.6b) 

everywhere.  Under  the condi t ion (2.6b), one finds f rom (2.5a) and (2.510) 
tha t  the only consistent solution is v2 = 0. 

Hence,  
v = v(u)  (2.7) 

Then  f rom equations (2.5c) and (2.5d), 

8../r E 2 ~__ 

and 

4~rp = 

The  internal metric  is 

eVvl 2 

4a~(sinh 2 u + sin z 8) 

e ' (2vll  - vi a + 2vl t anh  u) 
4aZ(sinh2 u + sin 2 O) 

(2.8a) 

(2.8b) 

d S  2 = e ~ d t  2 - e-~{a~[(sinh 2 u + sin s O)(du 2 + dO ~) + cosh 2 u cos 2 0 d92]} 
(2.8c) 

v mus t  be chosen in such a way  tha t  p and E 2 must  be regular everywhere 
and as u --> 0, E z must  vanish. 

The  external eleetrovae space is given by  the metric  

d S  2 = [1 + c cot  -1 (e0] -2 d t  2 -  [1 + c cot  - I  (eO]2[a2(dp 2 + d Z  2 + p2 d~2)], 
(2.9) 

obviously,  the external metric  is asymptot ical ly  fiat at  u ~ oo, i.e., at  infinite 
distance f rom the source. 
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Across the boundary, gut and g~ must be continuous (O'Brien and Synge, 
1952); so for any suitable form of  v, the arbitrary constant c and the corre- 
sponding boundary of  the source surface u may be evaluated. In general 
the value of  the arbitrary constant c and the value of  u at the boundary 
cannot be expressed in a closed form in terms of  e v and vx at the boundary. 
But these values can be numerically calculated for a particular suitable form 
of  e ~ of  the internal metric. In the following we give an example where c 
and the value of  u at the boundary can be expressed in a closed form. 

Let us take 

e K  t a n  - 1 (e ~) 

e ~ = (2.10a) [1 + etr/~')tan-X<e")] ~ 

where the arbitrary constant K is positive. Then from the continuity of  e ~ 
and (d/du)(eO across the boundary one can see that at the boundary of the 
distribution 

u = In [cot 2/K] (2.10b) 

and the constant 

K e-CrY/4 - 1> (2 .1 0 c )  c = ~  

One can find in a paper by Bonnor and Wickramasuriya (1972) another 
example where another form of e ~ has been taken. 

Lastly, the charge-to-mass-density ratio ~[p may be calculated from the 
equation of  motion 

d 2 x  u 
dS  ~ + r~av~v a -- -~-  F~av a (2.11) 

P 

It can be found out that g]p = + 1 for the internal space given by equation 
(2.8c). 

Since F~v = q~,~ - ~ . ,  and in our case only the Fo~ component exists, 
Fo~ = ~o,~, where ~o is the electric potential. Then a little examination of 
equation (2.8a) shows that u-constant surfaces are also ~o-eonstant surfaces, 
i.e., electric equipotential surfaces. Hence the above solution satisfies the 
theorem mentioned in the Introduction (De and Raychaudhuri, 1968). 

a s  

3. T H E  COSMOLOGICAL DISTRIBUTION 

Let us write v + u = A. Then equations (2.5a)-(2.5d) may be rewritten 

vlv2 + A1 tan 0 - A2 tanh u = 0 (3.1a) 

v22 + (Al l  + A22) + hi tanh u + A2 tan 0 = 0 (3.1b) 
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8, / . rE  2 = 

and, 

4 , r p =  

e v - 
4a2(sinh 2 u + sin s 0) [v~2 + (?t~ + A22) - ~1 t anh  u - ?t2 tan 0] 

(3.1e) 

e v- 
4a2(sinh 2 u + s in  2 0) 

x [ 2 (v l l  + v22) - 2(A1~ + t22)  - vl  s - v22 + 2vx tanh  u - 2v2 tan 0] 

(3.1d) 
Let  us assume 

;~x = 0 (3 .2 )  

Further ,  i f  we assume tha t  v is in l inear combina t ion  of  a funct ion o f  u and  
a funct ion o f  0, then f rom equat ion (3.1a), we can write 

vl = + t anh  u 

Hence,  we get two solutions for  v, 

(i) v = l n c o s h u +  

(ii) v = - I n  eosh u - 

and  v2 = + A2 

(3.3a) 

(3.3b) 

However ,  one can see f rom equat ion (3.1b) that  in either case the solution 
for  A remains  the same, which is 

e x = (C sin 0 + D) (3.4) 

where  C and D are arbi t rary  constants.  
We  are now going to find the first set o f  solutions. Wi th  equat ions (3.4), 

(3.3a), (3.1c), and (3.1d), we get 

cosh u [ 
8~rE~ = 4a2(sinh 2 u + sin 2 0) tanh2 u 

cosh u [ 
4rrp = 4a2(sinh 2 u + sin 2 0) 2 - t anh  2 u 

and  

dS 2 = cosh u(C sin 0 + D) dt ~ 

2Cs inO  C 2cos  20 ] 
(C sin 0 + D) + (C s-~'0 T 2))21 

(3.5a) 

2 C s i n 0  C 2cos  20 ] 
(C sin 0 + D) (C-~nO T ~9)2J 

(3.5b) 

a 2 

c o ' ~  u (smh2 u + sin 2 O)(du 2 + dO z) 

_ a2 cosh u cos 2 0 d~ (3.5c) 
(C sin # + D) 

The  expression (3.5b) shows that  the distr ibution can never be contained 
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within a spheroid. Besides, a little examination of the equation shows that 
there cannot even exist any pole where the matter density will vanish provided 
(C/D) ~ < 1. Further, to keep the matter density and the electric energy 
density positive everywhere, C and D must be of opposite sign, besides 
ID[ > IcI Obviously at infinity (i.e., u--~ oo), both the matter density and 
the electric energy density tends to zero. Hence, the space-time given by the 
metric (3.5c) (with the condition that C and D must be of opposite sign and 
I CI < I DI) has a continuous incoherent charged matter distribution extend- 
ing up to infinity. Using equation (2.11), we can find that the ratio 

= t a n h u  tanh 2u ( C s i n 0 + D )  + ( C s i n 0 + D )  2 

is zero only at the center and at best it can be made unity only over a 
0-constant surface. 

The above is a physical cosmological solution for an incoherent charged 
matter distribution in equilibrium. 

It can be shown that the other case, i.e., vl = - tanh  u and v2 = - 1 2 ,  
does not represent any physically permissible solution with positive matter 
and energy density everywhere. 
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